Welcome to LTP - Advanced Analytics & Business Consultancy

Billing is often a critical pain point of the customer journey in telcos and utilities.

Challenge

The problem is typically bigger than it seems at first glance: besides visible costs such as inbound calls that flood the customer support lines, there are many unhappy clients that do not complain.

Heavy investments in the billing system are usually prescribed, to make interfaces error-proof and transactional processes reliable. Still, in most cases, incorrect invoices continue to be issued every month.

Faced with this challenge, our client, a convergent telco, set up a “last resort” bill review team, to manually validate invoices and send them for amendment. Since the team’s capacity is limited, how to select invoices to check, to clear as many issues as possible?

Solution

Capitalizing on rich data from billing issues detected in the recent past, a model was developed to find potentially incorrect invoices.

A state-of-the-art machine learning algorithm was combined with tailored business-driven system validations, for maximum effectiveness.

Several relevant sources of billing issues were identified along the development process, such as the expiry of promotional offers and product portfolio changes pushed by commercial agents.

The developed model was then embedded in a simple and friendly app, used by the bill review team to select the invoices to be scanned in each billing cycle. Close assistance was provided to the team in an initial phase, ensuring the full adoption of the solution.

Result

In practice, the error rate in the invoices picked by the developed model is three times larger than the error rate in the invoices selected through the former approach. Additionally, by pinpointing the expected mistake, the model enables a targeted validation, making the bill review team twice as productive. The combination of both effects results in a sixfold increment in the invoices flagged by the team.

On top of that, the model also identifies invoices that are surely incorrect. Hence, no validation is needed, and such invoices are directly amended.

Overall, considering both manual and automatic markings, 12 times more issues are now solved in the same time span, significantly improving the perceived reliability of the billing process

By: Paulo Sousa , Bruno Batista

Service Applied
Marketing & Customer Analytics
Industry Applied
Telecommunications
Delivery Mode Applied
Leveraging analytics
Get in Touch Send Message